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Solutions of Equations

Scientists often write mathematical expressions to describe motion.
Suppose someone throws a rock straight up from a height of 6 ft at
a speed of 20 ft

s . The expression –16t2 + 20t + 6 gives the rock’s
approximate height (in feet) after t seconds. This assumes that the
rock is massive enough and compact enough that air resistance af-
fects it very little. Consider the value of –16t2 + 20t + 6 at 0.5 s:

–16(0.5)2 + 20(0.5) + 6 Replace t with 0.5

–16(0.25) + 10 + 6 Simplify

–4 + 10 + 6 Simplify some more

12 And some more

Thus the rock is 12 ft above the ground 0.5 s after it was thrown.

When will the rock be at ground level? The rock will be at ground
level when the expression –16t2 + 20t + 6 equals 0. So we can find
the value of t when the rock is at ground level by solving the equa-
tion –16t2 + 20t + 6 = 0 for  t. Mathematicians have a formula for
solving such an equation. We get the following expression for t  if
we apply that formula to –16t2 + 20t + 6 = 0:

−20±√202
−4 (−16)(6)

2(−16)
The symbol “±” is read
“plus or minus”

−20±√400+384
−32 Simplify

−20±√784
−32 Simplify again

−20±28
−32

And again

8
−32

or
−48
−32

Two options

–0.25  or   1.5   Divide

The second value tells us that the rock will hit the ground 1.5 s af-
ter it was thrown straight up. To test that conclusion, you can re-
place t with 1.5 (or 3

2 ) in the expression –16t2 + 20t + 6. The result
should be 0.
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Observe that to get the value of 1.5 s, we divided –48 by –32. So
we divided a negative number by a negative number to get a posi-
tive number. People used to have a negative attitude toward nega-
tive  numbers.  This  resulted  in  negative  terminology being used
with  negative  numbers.  In  a  book  published  in  1557,  Robert
Recorde referred to a number below zero as an “Absurde nomber.”
For example, he wrote that 8 – 12 “is an  Absurde nomber. For it
betokeneth lesse then naught by 4.” A copy of the paragraph that
contains this terminology is reproduced below:

The negative attitude people had toward numbers below zero may
help to explain why such numbers received their negative name.

The fact that  −48
−32  produced the useful result of 1.5 s shows that

negative numbers can be quite useful. We are so used to negative
numbers that we may even view them as being just as real as posi-
tive numbers. A temperature of –4°C is just as real as a temperature
of 4°C. However, how should we view the expression 8

−32  which
gives the result of –0.25 s? Does –0.25 s have meaning or is it
meaningless? Keep reading to find out!

The rock’s approximate velocity (in  ft
s ) can be calculated using

the expression –32t + 20 where t is the number of seconds. If t is
0.5 s, the expression –32t + 20 produces:

–32(0.5) + 20 Substitute 0.5 for t

–16 + 20 Simplify

4 Simplify again

Thus the rock travels upward at a speed of 4 ft
s  when it has trav-

eled 0.5 s. If  t is –0.25 s, this expression gives –32(–0.25) + 20
which is 8 + 20. This results in a speed of 28  ft

s . To understand
this result, consider two rocks—call them A and B. Rock A is pro-
pelled upward at 20 ft

s  from a height of 6 ft. Rock B is propelled
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upward at  28 ft

s  from ground level.  Suppose that the propulsion
systems for these two rocks are next to each other with rock B ini-
tially at ground level and rock  A initially 6 ft above the ground.
What is required so that the rocks travel side by side? The result of
–0.25 s shows that rock B needs to be propelled 0.25 s before rock
A is propelled.

Imagine rock B being propelled from ground level at 28 ft
s . When

it reaches 6 ft, it will have slowed down to 20 ft
s . If rock A is pro-

pelled at 20 ft
s  at the instant that rock B is 6 ft above the ground,

then the two rocks will travel side by side.

Equations describe many things in this world, and mathematicians
like to be able to solve equations. Consider x3 – 9x + 28 = 0. One
method of solving this equation makes use of the following expres-
sion:

3√−
28
2

+√(28
2 )

2

+(−9
3 )

3

+
3√−28

2
−√(28

2 )
2

+(−9
3 )

3

Carefully note the following steps in the simplification of the 
above expression:

3√−14+√142+(−3)3+
3√−14−√142+(−3)3

3√−14+√196+(−27)+3√−14−√196+(−27)

3√−14+√169+
3√−14−√169

3√−14+13+3√−14−13
3√−1+ 3√−27

−1+(−3)

−4

So –4 is a solution to x3 – 9x + 28 = 0. We can test this by evaluat-
ing (–4)3 – 9(–4) + 28. This expression simplifies to –64 + 36 + 28
which is 0. 
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Now consider the equation x3 – 6x + 4 = 0. Using the same method
as before, a solution of the equation can be found using the follow-
ing expression:

3√−
4
2
+√( 4

2)
2

+(−6
3 )

3

+
3√−4

2
−√(4

2)
2

+(−6
3 )

3

Carefully note the following steps in the simplification of the 
above expression:

3√−2+√22+(−2)3+
3√−2−√22+(−2)3

3√−2+√4+(−8)+
3√−2−√4+(−8)

3√−2+√−4+
3√−2−√−4

What should we do now? What does  √−4  mean? We know that
2·2 = 4 and (–2)(–2) = 4, but what times itself equals –4? Before
attempting an answer, let us consider the expression √12 . This ex-
pression can be written as  √2⋅2⋅3 . Using square root arithmetic,
this  can  be  written  as  2√3  since  √2⋅2=2 .  Thus  √12=2√3 .
Likewise, the expression √−4  can be written as √−1⋅2⋅2  which
can be written as  2√−1 . Thus  √−4=2√−1 . What does  √−1
mean? It means a number that when multiplied by itself equals –1.
Thus √−1√−1=−1 . Remember this!

Using the fact  √−4=2√−1 , we write  3√−2+√−4+
3√−2−√−4

as 3√−2+2√−1+
3√−2−2√−1 .

What  can we do with  3√−2+2√−1  and  3√−2−2√−1 ? Let  us
first consider 3√−2+2√−1 . We will demonstrate the amazing fact
that  3√−2+2√−1=1+√−1 .  To demonstrate this,  we will  show
that  (1+√−1)

3
=−2+2√−1 . In showing this, we will make use

of the distributive property and the fact that √−1√−1=−1 . Care-
fully  observe  the  following  steps  in  the  simplification  of
(1+√−1)

3
:

(1+√−1)(1+√−1)(1+√−1) Expand

(1+√−1+√−1+√−1√−1)(1+√−1) Distribute



-6-
(1+2√−1+(−1))(1+√−1) √−1 √−1=−1

(2√−1)(1+√−1) Simplify

2√−1+2√−1√−1 Distribute

2√−1+2(−1) √−1 √−1=−1

2√−1−2 Simplify

−2+2√−1 Rearrange

This shows that  (1+√−1)
3
=−2+2√−1 . Thus we can conclude

that 3√−2+2√−1=1+√−1 . Similar calculations demonstrate that
3√−2−2√−1=1−√−1 .  We  can  now  simplify  the  expression
3√−2+2√−1+

3√−2−2√−1  which is one of the solutions of the
equation   x3 –  6x +  4  =  0.  Observe  the  amazing simplification
process:

3√−2+2√−1+
3√−2−2√−1 Expression to simplify

1+√−1+1−√−1 See paragraph above

2 Simplify

Thus 2 is a solution to x3 – 6x + 4 = 0. We can test this by evaluat-
ing (2)3 – 6(2) +4. This expression simplifies to 8 – 12 + 4 which is
0. 

Example exercise: Simplify (−5+12√−1)(2+3√−1) .

Solution: (−5+12√−1)(2+3√−1) Write product

−10−15√−1+24√−1+36 √−1√−1 Distribute

−10+9√−1+36(−1) √−1 √−1=−1

−10+9√−1−36 Simplify

−46+9√−1 Simplify again

Exercise 1: Simplify (2+3√−1)(2+3√−1) .

Extra credit 1: Solve  x3 – 24x + 72 = 0 using the cube root method
demonstrated in this lesson (study the example for x3 – 9x + 28 = 0).

Extra credit 2: Solve  x3 – 39x + 92 = 0 using the cube root method
demonstrated in this lesson (study the example for x3 – 6x + 4 = 0).
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One-dimensional and Two-dimensional Numbers

The expression √−1  was useful in helping us to discover that 2 is
a solution of x3 – 6x + 4 = 0. To help us get a better understanding
of √−1 , let us consider the number line:

The number line displayed above is a small portion of the entire
number line. The entire number line continues without end in both
directions. On the number line above, the number –2 has been plot-
ted. As we study the number line, we are unable to find any num-
ber that can be multiplied by itself to make –1. Where can √−1  be
found if it is not on the number line?

To find √−1 , we will go to a higher dimension. The number line
is one-dimensional. We will observe the two-dimensional number
plane.

Three  points  are  plotted  on  the  two-dimensional  number  plane
shown below. These points are –2, √−1 , and −4+3√−1 . These

0 1 2 3 4 51-1-2-3-4-5

√−1

2√−1

3√−1

4√−1

5√−1

−√−1

−2√−1

−3√−1

−4√−1

−5√−1

–1–2–3–4–5 1 2 3 4 5

−4+3√−1

2)
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numbers are two-dimensional numbers (2-D #s) since they are on
the two-dimensional number plane. Numbers on the number line
are one-dimensional numbers (1-D #s).

Observe that –2 can be written as −2+0√−1 . Also, √−1  can be
written  as  0+1√−1 .  Every 2-D number  can  be  written  in  the
form  a+b √−1  where  a and  b are numbers on the number line
(1-D #s). We see that –2 can be thought of as a 1-D number or as a
2-D number. When we plot it on the number line, we think of it as
a 1-D number. When we plot –2 on the number plane, we can think
of it as a 2-D number. Observe that the 1-D number line is part of
the 2-D number plane. Therefore every 1-D number is also a 2-D
number.

You may be wondering: “Are there 3-D or 4-D numbers?” The an-
swer to that question will come later. For now, we will focus on the
astonishing properties of the 2-D numbers.

Often it is helpful to give names to numbers. Let us call c the 2-D
number  0.8+0.6√−1 .  Likewise,  let  d = 0.96+0.28√−1 .  The
number plane below plots these numbers  as well  as some other
numbers. To improve our view of these numbers, the number plane

√−1

−√−1

–1 1

cd

d

c

cd 3

cd 2
cd 4

cd 5

cd 6

cd 7

cd 8

z=0.6−0.8√−1

|z|

0.6

–0.8
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has been magnified so that each space represents a distance of 0.2
or 1

5 . The multiplication of 2-D numbers helps to show one reason
why these numbers are so intriguing. To multiply c and d, we eval-
uate ( 0.8+0.6√−1 )( 0.96+0.28√−1 ). When we use the distribu-
tive property we get :

0.8(0.96)+0.8(0.28 √−1)+0.6√−1(0.96)+0.6 √−1(0.28√−1)

0.768+0.224√−1+0.576√−1+0.168(−1) Simplify

0.768−0.168+0.224√−1+0.576√−1 Rearrange

0.6+0.8√−1 Simplify

Therefore cd = 0.6+0.8√−1 . This point is labeled on the number
plane as cd.

To find cd·d (or cd 2), evaluate ( 0.6+0.8√−1 )( 0.96+0.28√−1 ).
The multiplication produces the result  cd 2 =  0.352+0.936√−1 .
We then calculate cd 3 by evaluating cd 2·d. The calculations show
that  cd 3 =  0.07584+0.99712√−1 .  Evaluate  cd 3·d to  calculate
cd4 = −0.2063872+0.9784704√−1 . We can continue with calcu-
lations to find  cd 5,  cd 6,  cd 7,  cd 8, etc. You may have noticed that
the plotted points look like they lie on part of a circle. This is not
an accident!

The size of a 2-D number is the distance from 0 to that number.
The number  z = 0.6−0.8√−1  is plotted on the number plane on
the previous page. A right triangle is drawn with one acute angle at
0 and the other acute angle at  z. The size of z is the length of the
hypotenuse of the triangle. The size of z is also called the absolute
value of z and is written as |z|. Thus the length of the hypotenuse is
|z|.

The length of the horizontal leg of the triangle is 0.6 and the length
of the vertical leg is 0.8. To find |z|, use the Pythagorean theorem:

|z|2 = 0.62 + 0.82 Pythagorean theorem

|z|2 = 0.36 + 0.64 Simplify

|z|2 = 1 Simplify again

|z| = 1 Square root both sides
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Now consider the number  w =  0.8+0.39√−1 . The number  w is
shown in the number plane below at an acute vertex of a right tri-
angle. The number 0 is at the other acute vertex. The length of the
horizontal leg of the triangle is 0.8 and the length of the vertical leg
is 0.39. Since the length of the hypotenuse is |w|, we can use the
Pythagorean theorem to write |w|2 = 0.82 + 0.392. Completely sim-
plifying this  equation produces |w|2 = 0.7921. If  we square root
both sides, we get |w| = 0.89.

In this number plane,  c =  0.8+0.6√−1 . Calculations show that
cw =  0.406+0.792√−1 . If we evaluate  cw·w,  we discover that
cw2 = 0.01592+0.79194√−1 .  The  Pythagorean  theorem  shows
that |c| = 1,  |cw| = 0.89, and |cw2| = 0.7921. These numbers demon-
strate an important concept about the multiplication of 2-D num-
bers: The size of the product of 2-D numbers equals the product of
the sizes of the numbers. Note: |c·w| = |c|·|w| since 0.89 = 1·0.89.
Also, observe that |cw·w| = |cw|·|w| since 0.7921 = 0.89·0.89. We
also could write |c·w·w| = |c|·|w|·|w| which is verified by the equa-
tion 0.7921 = 1·0.89·0.89.

Recall the earlier number plane which showed that c, cd, cd 2, etc.
are on part of a circle. The reason for this is that |c| = 1 and |d| = 1.

cw

√−1

−√−1

–1 1

c

w

cw9

cw2

cw3

cw4

cw5

cw6

cw7

cw8 cw10
cw11

cw12

25.989°

25
.9

89
°

25
.9

89
°
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Thus any product of c and d will have a size of 1. So all the prod-
ucts of  c and  d are exactly 1 unit from 0. This means that all of
these numbers lie on a circle with a radius of 1 where the center of
the circle is at 0.

Since |w| = 0.89 which is less than 1, multiplying a 2-D number by
w results in a 2-D number that is smaller than the original number.
As  an  example,  |c·w|<|c|  since  0.89<1.  Also,  |cw·w|<|cw|  since
0.7921<0.89. Study the diagram of the number plane on the previ-
ous page and observe that  cw is closer to 0 than  c. Also,  cw2 is
closer to 0 than cw. As we multiply by w, we produce numbers that
are closer and closer to 0.

For the triangle drawn in the number plane, it can be shown that
the angle at 0 is near 25.989°. If we draw line segments from 0 to
c,  cw, cw3, and cw4, it can be shown that the angle between c and
cw is near 25.989°. Also, the angle between  cw3 and  cw4 is near
25.989°. Each time we multiply by  w, the angle changes by ap-
proximately 25.989°. If we were to draw line segments from 0 to
cw7 and cw8, the angle between those line segments would be near
25.989°.

As we multiply by  w, we rotate counterclockwise about 0. When
working with a number plane,  a  counterclockwise rotation is  a
positive rotation. A clockwise rotation is a negative rotation.

Exercise 1: To the nearest hundredth, if s = 0.6+0.8√−1 , then 
s2 = −0.28+0.96√−1 , s3 ≈ −0.94+0.35√−1 , 
s4 ≈ −0.84−0.54 √−1 , s5 ≈ −0.08−1.00√−1 , and 
s6 ≈ 0.75−0.66√−1 . We read “≈” as “is approximately equal to.”
On graph paper, set up a 2-D number plane where each square is
0.2 units wide (study the last two number planes printed in this lesson). The
horizontal axis should vary from –1 to 1 while the vertical axis
should vary from −√−1  to √−1  as shown on the previous page.
On this number plane, plot and label the points s, s2, s3, s4, s5, and
s6.
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Angles of 2-D Numbers

The number plane displayed below shows the locations of three
numbers: f = 5+2√−1 , g = 5−2√−1 , and h = −5+2√−1 . A line
segment is drawn to each number. Arrows are drawn starting from
the positive part of the 1-D number line. Labels show that the an-
gle of  f is around 21.8° and the angle of  h is around 158.2°. The
two arrows drawn to the line segment for g show that the angle of
g can be thought of as –21.8° or as 338.2°.  The  angle of a 2-D
number is always measured from the positive part of the 1-D num-
ber line. A positive angle is a counterclockwise angle, and a nega-
tive angle is a clockwise angle. For historical reasons, the angle of
a 2-D number is also called the argument of the number. This ex-
plains why we write arg f ≈ 21.8° and arg h ≈ 158.2°.  The expres-
sion “arg f ” means “the argument of f.” However, we can also read
“arg f ” as “the angle of f ” since argument means angle when we
discuss 2-D numbers.

√−1

2√−1

3√−1

4√−1

5√−1

−√−1

−2√−1

−3√−1

−4√−1

−5√−1

–1–2–3–4–5 1 2 3 4 5

f

33
8.

2°

15
8.

2°

21.8°

-21.8°

g

h

3)
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The number  plane  displayed below shows these  three  numbers:
m = 1+√−1 , n = −3+√−1 , and p = −4−2√−1 . Calculating the
product mn =( 1+√−1 )( −3+√−1 ) shows that mn = −4−2√−1 .
Thus mn = p.

 

The numbers in the diagram show that |m|  = √2 , |n|  = √10 , and
∣mn∣=√20=2√5 . Observe that |m|·|n| = |mn|. This verifies an im-
portant concept emphasized earlier: The size of the product of 2-D
numbers equals the product of the sizes of the numbers.

The angles of the numbers m,  n, and mn demonstrate another im-
portant concept:  The angle of the product of 2-D numbers equals
the  sum of  the angles of the numbers!  For the numbers plotted
above, arg m = 45°, arg n ≈ 161.6°, and arg mn ≈ 206.6°. Observe
that 206.6° = 45° + 161.6°. This demonstrates the following rule:
arg mn = arg m + arg n.

Numbers on the positive 1-D number line have an angle of 0°.
Numbers on the negative 1-D number line have an angle of 180°.
Consider the product (–2)(–1).  Since both numbers are  negative
1-D numbers,  they both  have  an  angle  of  180°.  Thus  we write
arg –2 = 180° and arg –1 = 180°. According to the concept in the

206.6°

√−1

2√−1

3√−1

4√−1

5√−1

−√−1

−2√−1

−3√−1

−4√−1

−5√−1

–1–2–3–4–5 1 2 3 4 5

√2
√10

√20=2√5

mn

p = mn

161.6°
45°



-14-
previous paragraph, arg (–2)(–1) = arg –2 + arg –1. Thus we can
write arg (–2)(–1) = 180° + 180°. So arg (–2)(–1) = 360°. Since an
angle of 360° has the same direction as an angle of 0°, we say that
arg (–2)(–1) = 0°. This means that (–2)(–1) must be on the positive
1-D number line. Thus the product of (–2) and (–1) must be a posi-
tive number. We know that (–2)(–1) is the positive number 2.

A study of 2-D numbers helps us to gain a better understanding of
the 1-D numbers. A study of 2-D numbers should help us to under-
stand that multiplying by a negative number requires a 180° rota-
tion. Since |–1| = 1 and arg –1 = 180°, multiplying by –1 will not
change the size of a number. Instead, multiplying by –1 will only
rotate the number by 180°.

Now consider √−1 . Since ∣√−1∣=1  and arg √−1  = 90°, multi-
plying by √−1  will not change the size of a number. Instead, mul-
tiplying by √−1  will only rotate a number by 90°.

Study the number q = 2√3+2√−1  which is plotted on the number
plane below. The angle of  q is 30°. Multiplying  q by  √−1  pro-
duces  −2+2√3√−1 . This multiplication rotates the number by
90° so that the angle of q √−1  is 120°.

√−1

2√−1

3√−1

4√−1

5√−1

−√−1

−2√−1

−3√−1

−4√−1

−5√−1

–1–2–3–4–5 1 2 3 4 5

12
0°

30°21
0°

30
0°

q

q√−1

−q√−1

–q
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Multiplying q √−1  by √−1  produces −2√3−2√−1  which has
an angle of 210° since 120° + 90° = 210°. This number is plotted
as –q on the number plane. Multiplying –q by √−1  results in the
number  –q √−1  = 2−2√3√−1 . Observe that the angle for this
number is 300°.

Multiplying 2−2√3√−1  by √−1  produces 2√3+2√−1  which
has an angle of 390° since 300° + 90° = 390°. However, 390° is the
same direction as 30°. Thus the angle of 2√3+2√−1  is also 30°.
This makes good sense since 2√3+2√−1  is the number q. Thus
multiplying q by √−1  four times resulted in the number q again!
Observe the pattern in the following table:

q = q

q √−1 = q √−1

q √−1 √−1 = –q

q √−1 √−1 √−1 = –q √−1

q √−1 √−1 √−1 √−1 = q

q √−1 √−1 √−1 √−1 √−1 = q √−1

q √−1 √−1 √−1 √−1 √−1 √−1 = –q

q √−1 √−1 √−1 √−1 √−1 √−1 √−1 = –q √−1

This pattern repeats every four multiplications since arg √−1 = 90°
and 4·90° = 360°.

Exercise 1: Let c = 3+4√−1 . Evaluate ( 3+4√−1 )( √−1 ) to find
c √−1 . Then find c √−1 √−1 . Then find c √−1 √−1 √−1 . 

Exercise 2: On graph paper make a number plane such that each
square is 1 unit wide. Make the horizontal axis go from –5 to 5 and
the  vertical  axis  go  from  −5√−1  to  5√−1  (carefully  study  the

example graphs in this lesson). Plot and label c,  c √−1 , c √−1 √−1 ,
and c √−1 √−1 √−1  (use the values from the previous exercise).

Exercise 3: In the diagram on the previous page, what is the value
of arg -q?
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The Unit Circle

The unit circle is the circle centered at 0 that has a radius of 1. The
number p=

1
2 +

√3
2 √−1  is plotted on the unit circle shown below.

Observe that  arg    p   = 60° and  |  p  | = 1. Using concepts from trigo-
nometry, we say that  cos 60°= 1

2  and  sin 60°= √3
2 . Thus we can

write p=cos 60°+√−1sin 60° . 

On the diagram above, the number i=√−1  is plotted. It is tradi-
tional to use the symbol i for √−1 . Thus p=

1
2 +

√3
2 √−1  can be

written as p=
1
2 +

√3
2 i . Likewise, p=cos 60°+√−1sin 60° can be

written as p=cos 60°+i sin 60° .

The above diagram shows the number −p=−
1
2 −

√3
2 √−1 . We can

write that number as  −p=−
1
2 −

√3
2 i .  From the diagram, we see

that |–  p  | = 1. Observe that arg –  p   = 240° since 180° + 60° = 240°.
In simple trigonometry, we consider the sines and cosines of angles
between 0° and 90°. If we extend the ideas of sine and cosine to
other angles, we discover that cos 240°=−1

2  and sin 240°=−√3
2 .

p=
1
2 +

√3
2 √−1√−1

−√−1

–1 1

60°
1
2

−
√3
2

1
−

1
2

1
√3
2

i

–i
−p=−

1
2 −

√3
2 √−1

4)
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Thus −p=−

1
2 −

√3
2 i  can be written as −p=cos 240°+i sin 240° .

Compare that with p=cos 60°+i sin 60° . Both numbers are writ-
ten as the  cosine of an angle plus  i times the  sine of that angle.
Each 2-D number on the unit circle can be written that way. To
simplify notation,  we write  p=cis 60°  and  −p=cis 240° .  We
pronounce cis as the word sis. In cis, the c stands for cosine; the i
stands for √−1 ; and the s stands for sine. 

Consider cis 90°. This means cos 90° +   i   sin 90°. Since cos 90° = 0
and sin 90° = 1, this shows that cis 90° = 0 + 1i. Thus cis 90° = i.
Observe that arg i = 90° and |i| = 1.

Consider cis 270° = cos 270° +   i   sin 270°. Since cos 270° = 0 and
sin 270° = –1, we see that cis 270° = 0 – 1i. Thus cis 270° = – i.
Observe that arg –  i   = 270° and |–  i  | = 1. Every number on the unit
circle has a size of 1. A number with a size of 1 is a unit number.
The diagram above displays 12 special unit numbers on the unit
circle along with the angle for each number. For example, the dia-
gram shows that 1

2−
√3
2 i = cis 300° which is also cis –60°.

–1 + 0i

60°

1
2
+√3

2
i

1
2
−√3

2
i

−
1
2
+√3

2
i

−
1
2
−√3

2
i

−√3
2

+
1
2

i

−
√3
2

−
1
2

i √3
2

−
1
2

i

√3
2

+
1
2

i

1 + 0i

0 – 1i

0 + 1i

30°

0°

90°

120°

150°

180°

210°

240°

270°

300°

330°
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The unit circle diagram with 12 special numbers comes in handy
for certain calculations. Study the exercises below that make use of
this unit circle.

Example exercise: Evaluate 8 cis 150°.

Solution: 8 cis 150°

8 ( −√3
2 +

1
2 i ) See unit circle

−4√3+4i Distribute

Recall that if m and n are 2-D numbers, then |m|·|n| = |mn|. There-
fore, |8 cis 150°| = |8|·|cis 150°| = 8·1 = 8. Thus | −4√3+4i | = 8.

Also remember that arg mn = arg m + arg n. Thus we can conclude
that arg (8 cis 150°) = arg 8 + arg (cis 150°) = 0° + 150° = 150°.
This shows that arg ( −4√3+4i ) = 150° .

These calculations demonstrate that 8 cis 150° shows both the size
and the angle of −4√3+4i . We say that 8 cis 150° is the polar
form of  the  2-D number  while  −4√3+4 i  is  the  rectangular
form of the 2-D number. When writing in rectangular form, al-
ways put the i term last. Do not forget the basic concepts shown
by the equations |8 cis 150°| = 8 and arg (8 cis 150°) = 150°. 

Example exercise: Write the rectangular form of 6 cis 390°.

To solve, make use of the fact that a circle has 360°. Thus cis 30°
is at the same location as cis 390° since 30° = 390° – 360°.

Solution: 6 cis 390°

6 cis 30° cis 390° = cis 30°

6 ( √3
2 +

1
2 i ) See unit circle

3√3+3 i Distribute

Exercise 1: Write the rectangular form of 10 cis –30°.

Exercise 2: Study the unit circle. What is arg –i?

Exercise 3: Study the unit circle. What is arg ( √3
2 −

1
2 i) ?
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Multiplying 2-D Numbers

Example exercise:  Write both the polar form and the rectangular
form of the product (3 cis 120°)(2 cis 330°).

Solution: First consider the size of the product. Make use of the
fact that |mn| = |m|·|n| to do these calculations:

|(3 cis 120°)(2 cis 330°)| = |3 cis 120°|·|2 cis 330°| = 3·2 = 6.

Now consider the angle of the product. Make use of the fact that 
arg mn = arg m + arg n. Thus arg [(3 cis 120°)(2 cis 330°)] = 
arg (3 cis 120°) + arg (2 cis 330°) = 120° + 330° = 450°.

The above calculations show that 6 cis 450° is a polar form of the
product. However, an angle of 360° or higher is not acceptable in
an answer. Thus subtract 360° from 450° to get an angle of 90°.
Thus 6 cis 450° = 6 cis 90°  = 6 (0 + 1i) = 6i  (see unit circle).

Since i = √−1 , it follows that i 2 = ii = √−1 √−1  = –1.
Therefore  we write  i3 = i2·i = –1·i =  –i.  Then we con-
clude that i 4 = i 2·i2 = –1·(–1) = 1. Therefore i5 = i4·i = 1·i
= i and i6 = i4·i 2 = 1·(–1) = –1. The results are in the table
to the right. Study the pattern in the table. This pattern re-
peats every 4th power of i since multiplying by i rotates a
number by 90° without changing the size of the number.
Remember that arg i = 90° and |i| = 1.

Example exercise: Evaluate (–2 + 3i)(4 – 5i).

Solution: (–2 + 3i)(4 – 5i)

(–2)(4) + (–2)(–5i) + 3i(4) + 3i(–5i) Distribute

–8 + 10i + 12i – 15i2 Simplify

–8 + 22i – 15(–1) i2 = –1 

–8 + 22i + 15 Simplify

7 + 22i Simplify

Exercise 1: Write both the polar and rectangular forms of the 
product (4 cis 150°)(3 cis 240°).

Exercise 2: Evaluate (1 – 2i)(–3 + 4i).

i1 = i

i2 = –1

i3 = –i

i4 = 1

i5 = i

i6 = –1

i7 = –i

i8 = 1

5)
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Rotating Rods

Consider two equally long rotating rods in which the 2nd rod rotates
twice as fast as the 1st rod. Also, the 2nd rod is attached to the end of
the 1st rod and has a pen attached to its free end. In the diagrams
below, the 1st rod attaches to the plane at the circle with the black
interior, and the 2nd rod attaches to the 1st rod at the circle that has a
white interior. The curve shows the path traced by the pen.

Both rods start at 0°. The leftmost diagram above shows the path
traced by the pen as the 1st rod rotates through 30° and the 2nd rod
rotates through 60°. The rightmost dia-
gram above shows the path traced by the
pen as the 1st rod rotates through 90° and
the 2nd rod rotates 180°. The diagram to
the  right  of  this  paragraph  shows  the
curve that results when the 1st rod rotates
360° and the 2nd rod rotates twice for a
total of 720°. As the rods continue to ro-
tate, they will retrace the curve that has
already been drawn.

We will use the lowercase Greek letter θ (theta) for measures of
angles. In the leftmost diagram above, θ = 30° and 2θ = 60°. The
curve sketched by these rotating rods can be described using the
equation z = cis θ + cis 2θ.

Example exercise: Find z when θ = 30°.

Solution: cis 30° + cis 2(30°) Substitute 30° for θ

cis 30° + cis 60° Simplify
√3
2 +

1
2 i+ 1

2 +
√3
2 i See unit circle

(
1
2+

√3
2 )+(

1
2+

√3
2 )i Rearrange

pivot
1
st  rod

2
nd  ro

d

30°

60°

60°

120°

90°

180°

pen

360° 720°

6)
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Example exercise: Find z when θ = 60°.

Solution: cis 60° + cis 2(60°) Substitute 60° for θ

cis 60° + cis 120° Simplify
1
2+

√3
2 i+−

1
2 +

√3
2 i See unit circle

√3i Simplify

Consider  the  equation
z = cis θ + cis -2θ. This
describes a setup where
the 2nd rod rotates opposite the direction
the  first  rod rotates.  The one  diagram
shows the curve drawn when the 1st rod
has rotated 30° and the 2nd rod has rotat-
ed –60°. The other diagram shows the
curve after the 1st rod rotates 360° and
the 2nd rod rotates –720°.

Example exercise: Find z when θ = 60°.

Solution: cis 60° + cis –2(60°) Substitute 60° for θ

cis 60° + cis –120° Simplify

cis 60° + cis 240° –120° + 360° = 240°
1
2+

√3
2 i+−

1
2 −

√3
2 i See unit circle

0 Simplify

This shows that when θ = 60°, the pen draws the point 0 + 0i.

The equation 
z = 2 cis θ + cis 6θ
describes  a  setup
where the 1st rod is
2 units long and the 2nd rod is 1 unit
long. The 2nd rod rotates 6 times as
fast as the 1st rod. The one diagram
shows the curve drawn when the 1st

rod rotates through 30° and the 2nd

rod rotates 180°. The other diagram
shows  the  curve  after  the  1st rod
rotates 360° and the 2nd rod rotates 2160°.

–720°360°

–60°30°

30°

180°

360° 2160°
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Example exercise: Find z when θ = 150° (for last design on previous page).

Solution: (for z = 2 cis θ + cis 6θ)

2 cis 150° + cis 6(150°) Substitute

2 cis 150° + cis 900° Simplify

2 cis 150° + cis 180° 900° – 720°

2(−√3
2 +

1
2 i)+−1+0 i Unit circle

−√3+1i−1 Simplify

(−1−√3)+i Rearrange

Now consider three connected rods.
The 1st rod attaches to the plane at 0. The
2nd rod attaches to the free end of the 1st

rod, and the 3rd rod attaches to the free
end of the 2nd rod. The pen drawing the curve is on the 3rd rod. The
equation z = 3 cis θ + 2 cis -3θ + cis 13θ describes an arrangement
where the 3rd rod rotates 13 times
as fast as the 1st rod. The top dia-
gram  shows  the  curve  for  this
equation  as  θ varies  from  0°  to
360°. 

The equation for the fish design is
z = 2 cis θ + 2 cis -θ + cis 2θ. The
equation for the design to the right:
z = 7 cis 3θ + 3 cis -5θ – cis -1.04θ.
The minus sign before the 3rd cis
shows that the 3rd rod points to the
left when  θ = 0°. To produce this
design,  θ was varied from -1077°
to 1077°. Since -1.04 is not an in-
teger,  the  -1.04  keeps  the  design
from  repeating  every  360°.  The
complete  design  repeats  every
9000°. A slightly zoomed out view
drawn with  a  thinner  curve  is  at
the bottom. It was drawn by vary-
ing θ from -4500° to 4500°.
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The equations for the two designs above:

z = 2i cis 4θ + i cis 11θ + i cis -17θ (left design)

z = 4i cis 4θ + 2i cis -3θ + i cis -24θ (right design)

For each equation above, each cis has an i in front of it. Multiply-
ing each cis by i rotates each arm by 90°. Thus when θ = 0°, each
arm points up instead of to the right. This results in rotating the en-
tire design by 90°.

The rotating rods concept is behind two designs on the title page.
The equation  z = 12 cis 1.004θ + 5 cis -7θ + 2 cis 25θ where  θ
varies  from  -719°  to  719°  describes  the  top  such  design.  The
equation  z = 13 cis  θ + 6 cis -7.01θ + 3 cis -23θ where  θ varies
from –720° to 720° describes the bottom such design.

Exercise 1: The equation for this
design is z = 2 cis θ + cis -5θ.
Find z when θ = 60°.

Exercise 2:  Write both the polar
and  rectangular  forms  of  the
product (cis 60°)(2 cis 150°).

Exercise 3: Evaluate i3 (for
assistance, consider i2·i).
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Arrows

We have viewed 2-D numbers as being points in the 2-D number
plane. We can also view 2-D numbers as arrows. The number plane
below shows the number –4 + 2i written beside some arrows. One
arrow begins at the number 0 and ends at –4 + 2i. Another arrow
begins at 5 – 5i and ends at 1 – 3i. We say that its tail is at 5 – 5i
and its head is at 1 – 3i. Each arrow labeled as –4 + 2i points in the
same direction and has the same size. Thus each one represent the
same number: –4 + 2i.

Arrows that represent 2-D numbers are called  vectors. When we
slide a  vector  without  changing its  direction or size,  we do not
change the number the vector represents. All of the –4 + 2i vectors
are parallel vectors.

Consider the vector that starts at 0 and ends at –4 + 2i. To the head
of that vector we attach the tail of the vector 2 + 3i. To the head of
the vector 2 + 3i we attach the tail of the vector 5 –  i. When we
draw a vector from 0 to the  head of  5 –  i,  we get the vector
3 + 4i . This is the value of (–4 + 2i) + (2 + 3i) + (5 – i). You have
just observed the head-to-tail method of adding –4 + 2i and 2 + 3i
and 5 – i.

–1–2–3–4–5 1 2 3 4 5

i

2i

3i

4i

5i

–2i

–i

–3i

–4i

–5i

–4 + 2i

2 
+ 

3i

5 – i

3 
+ 

4i

–4 + 2i
–4 + 2i

–4 + 2i
–4 + 2i

7)
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The number plane below shows vectors 3 and 4i. When we use the
head-to-tail method to add those vectors, we get 3 + 4i. Since 4i is
perpendicular to the 1-D number line, we will call 4i the perpen-
dicular portion of the number 3 + 4i. We will call 3 the 1-D por-
tion of the number 3 + 4i.

If the vector for a number is perpendicular to the number
line, we will call that number a perpendicular number.
The number plane above shows vectors for the following
perpendicular numbers: i, –i, 3i, –4i, and 4i.

Recall the table to the right.  Consider (–i)2. This equals
(–i)(–i) = (i3)(i 3) = i 6 = –1. So both i 2 and (–i)2 equal –1.
In the number plane, i and –i are the only perpendicular
numbers with a size of 1. We will call them unit perpen-
dicular numbers. Observe that the square of a unit per-
pendicular number is –1.

Exercise 1: On graph paper, set up a number plane where the hori-
zontal axis varies from –5 to 5 and the vertical axis varies from –5i
to 5i. Use the head-to-tail method to add –4 and 5i. On the same
number plane, use the head-to-tail method to add the three vectors
3 – 5i, 2 + 7i, and –1 + i. Label every vector.

3

–1–2–3–4–5 1 2 3 4 5

i

2i

3i

4i

5i

–2i

–i

–3i

–4i

–5i

3 
+ 

4i

4i

3i

i

– i

–4i

i 1 = i

i 2 = –1

i 3 = –i

i 4 = 1

i 5 = i

i 6 = –1

i 7 = –i

i 8 = 1
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4-D Numbers

Since 2-D numbers are so useful, might there be 3-D numbers that
can help us do 3-D work? There are numbers  beyond 2-D numbers
that help us with 3-D calculations. However, these are 4-D num-
bers! There are no 3-D numbers, but there are a couple of types of
4-D numbers. We will focus on only one type.

Recall that i 2 = –1 and i is a
unit  perpendicular  number
since |i| = 1 and the vector  i
is perpendicular to the num-
ber line.  Consider a vector    j
that  is  perpendicular  to  the
number line and to the vector
i. The diagram to the right at-
tempts to show 3-D concepts
on a 2-D page. It shows the
vectors 1,  i, and  j with their
tails at 3 – 3i. The vector j is
perpendicular to both 1 and i.
Vector  j points  out  of  the
page. Its head is at 3 – 3i + j.

To increase understanding, look at the vector –2 + 5i + 3j. This
vector also points out of the page, but at a different direction than
vector  j. The vectors 5i, –2, and 3j are all perpendicular to each
other.  The diagram shows the head-to-tail method being used to
add them to make the vector –2 + 5i + 3j.

Observe that | j| = 1. Thus j is a unit perpendicular number since it
is perpendicular to the number line. Vector j is not in the 2-D num-
ber plane since it is perpendicular to the 2-D number plane. Thus it
does not equal either i or –i which are the unit perpendicular num-
bers in the 2-D number plane. Recall that the square of a unit per-
pendicular number is –1. Thus j2 = –1.

When we have a system of numbers, we normally want to be able
to multiply the numbers. Thus we want to be able to calculate the
value of ij. However, the numbers we have so far do not allow us
to calculate ij. To find that value, we need the number k.

2 4

2i

-2i

-2-4

4j

4i

-4i

2j

-2j

-4j

5i

3j
-2

-2 + 5i + 3j

i

 j
1

8)
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The vector   k   is perpendicular
to  the  number  line  and  is
perpendicular to both   i   and   j.
Thus to  display the  number
line  along with  vectors  i,  j,
and  k would require four di-
mensions!  The  diagram  to
the  right  does  not  attempt
such a thing. Instead, it only
shows  the  three  dimensions
that contain the vectors  i,  j,
and  k.  It  leaves  out  the  di-
mension  that  contains  the
number line.

In this diagram, vectors i and j are in the same plane as the page.
Vector k points out of the page. Those three vectors are drawn with
their tails at 3i – 3j. The head of vector k is at 3i – 3j + k. The dia-
gram shows the head-to-tail method being used to add 5j, –2i, and
3k to make –2i + 5j + 3k.

We now have 4-D numbers. We can write 4 – 2i + 5j + 3k as an ex-
ample of a 4-D number. We cannot draw in four dimensions, but
we can still write 4-D numbers. The numbers 4, –2i, 5j, and 3k are
all perpendicular to each other. The number 4 is on the number line
while –2i, 5j, and 3k are all perpendicular to the number line. Thus
–2i, 5j, 3k, and –2i + 5j + 3k are  perpendicular numbers. The
perpendicular portion of 4 – 2i + 5j + 3k is the perpendicular
number –2i + 5j + 3k. The 1-D portion of 4 – 2i + 5j + 3k is 4.

Observe that |k| = 1 and k is perpendicular to the number line. Thus
k is a unit perpendicular number. Therefore k2 = –1. We are finally
able to evaluate ij. The answer is k. For these 4-D numbers to act
as we think numbers should act, we will need to accept an idea that
is different from an idea we use in elementary arithmetic. To see
this new idea, study the multiplication facts shown below:

ij = k,    jk = i,    ki = j,    ji = –k,    kj = –i,    ik = –j

Observe that ji = –ij and  kj = –jk and ik = –ki. Changing the order
of multiplication changes the answer! When we multiply the num-

2i 4i

2j

-2j

-2i-4i

4k

4j

-4j

2k

-2k

-4k

5j

3k
-2i

-2i + 5j + 3k

 j

k
i
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bers i, j, and k, the order of multiplica-
tion is important. This different concept
may seem strange,  but  it  is  useful  in
helping  us  to  understand  how  God’s
creation  operates.  The  tables  to  the
right should help you to multiply 4-D
numbers.

Example exercise: Simplify (4i – 3k)(1 + 2k).

Solution: (4i – 3k)(1 + 2k) 

4i(1) + 4i(2k) – 3k(1) – 3k(2k) Distribute

4i + 8(–j) – 3k – 6(–1) ik = – j and k 2 = –1

4i – 8j – 3k + 6 Simplify

6 + 4i – 8j – 3k Rearrange

Example exercise: Simplify (1 + 2k)(4i – 3k).

Solution: (1 + 2k)(4i – 3k) 

1(4i) + 1(–3k) + 2k(4i) + 2k(–3k) Distribute

4i – 3k + 8(j) – 6(–1) ki = j and k 2 = –1

4i – 3k + 8j + 6 Simplify

6 + 4i + 8j – 3k Rearrange

Observe that (4i – 3k)(1 + 2k) ≠ (1 + 2k)(4i – 3k).

Example exercise: Find |2 – i – 4j + 3k|.

Solution: To find the absolute value of a 4-D number, extend the
Pythagorean theorem to four dimensions. Let q = 2 – i – 4j + 3k.
The four components of q are 2, –i, –4j, and 3k. Find the absolute
value of each component of q: |2| = 2, |–i|=1, |–4j| = 4, and |3k| = 3.
Then |q|2 = 22 + 12 + 42 + 32. Thus |q|2 = 4 + 1 + 16 + 9 = 30.
Therefore |q| = √30 .

Exercise 1: Simplify (2j – 5k)(3 + j).

Exercise 2: Find |1 + 2i – j – 3k|.

ij
jk
ki

=
=
=

k
i
j

ji
kj
ik

=
=
=

−k
−i
− j

Study these tables

i 2 = –1   j 2 = –1   k 2 = –1
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3-D Vectors

Consider –2i + 5j + 3k. That
number can be written in the
form 0 – 2i + 5j + 3k. Thus
the value of the 1-D portion
of that number is 0. We will
call –2i + 5j + 3k a 3-D vec-
tor.  A 3-D vector is  a 4-D
number  in  which  the  1-D
portion  equals  0.  The  dia-
gram to the right shows the
3-D vectors 2j, 2i + 4j, 4k,
and –4k.  For each of  these
4-D numbers,  the  value  of
the 1-D portion is 0.

3-D vectors are powerful tools used in the study of God’s creation.
Often, 3-D vectors are printed using bold type. Thus 2i + 4j may be
printed as 2i + 4j. When written by hand, 2i + 4j may be written as

. The half-arrows show that i and j are vectors. These nota-
tions will not be used here.

Observe the results of multiplying 2i + 4j and 2j in different orders:

(2i + 4j)(2j) (2j)(2i + 4j) Multiply 2 ways

4ij + 8j2 4ji + 8j 2 Distribute

4k + 8(–1) 4(–k) + 8(–1) ij = k and ji = –k and j 2 = –1

–8 + 4k –8 – 4k Simplify and rearrange

The 4-D products are not 3-D vectors since the 1-D portion equals
–8 instead of 0 for each product. Because of such results, we do
not think of 3-D vectors as being 3-D numbers. However, the 4-D
products of 3-D vectors are still quite useful. If we extract the per-
pendicular portion of a product of two 3-D vectors, then that por-
tion by itself is a 3-D vector. We call that resulting vector the cross
product of the two vectors. To indicate the cross product, we use
the symbol  ×. So  (2i + 4j)×(2j) = 4k and  (2j)×(2i + 4j) = –4k.  A
cross product of two vectors is perpendicular to both of the origi-
nal vectors unless the cross product is 0.  In the diagram above,
both 4k and –4k are perpendicular to 2i + 4j and 2j.

2i 4i

2j

-2j

-2i-4i

4k

4j

-4j

2k

-2k

-4k

2i + 4j

9)



-30-
Recall that (2i + 4j)(2j) =  –8 + 4k and (2j)(2i + 4j) = –8 – 4k. Each
time, the 1-D portion of the product is –8. The negative of the 1-D
portion of the product of two 3-D vectors is quite useful in science.
We call the negative of the 1-D portion of the product of two vec-
tors the dot product of the vectors. We will use a large dot to indi-
cate the dot product. Thus we write (2i + 4j)•(2j) = 8. We can also
write (2j)•(2i + 4j) = 8. If the dot product is 0, then the vectors are
perpendicular to each other (if neither original vector is 0).

Example exercise: Find (2i + j – k)×(3k) and (2i + j – k)•(3k).

Solution: (2i + j – k)(3k) Find 4-D product

6ik + 3jk – 3k 2 Distribute

6(–j)+3(i) – 3(–1) ik = –j and jk = i and k 2 = –1

3 + 3i – 6j Simplify and rearrange

Thus (2i + j – k)×(3k) = 3i – 6j  and (2i + j – k)•(3k) = –3 .

Remember that the cross product is the perpendicular portion of
the 4-D product,  and the dot product is the negative of the 1-D
portion.

Example exercise: Find i×j, i•j, i×i, and  i•i.

Solution: ij ii Find 4-D products

k –1 ij = k and i 2 = –1

Thus i×j = k , i•j = 0 , i×i = 0 , and i•i = 1 .

For the product  ij,  the answer has only a perpendicular portion.
Thus the value of the 1-D portion is 0 and i•j = 0. Since i and j are
perpendicular to each other, the dot product had to be 0. For the
product ii, the answer has only a 1-D portion. Thus the value of the
perpendicular portion is 0 and i×i = 0. The result  i×i = 0 demon-
strates the rule that the cross product of parallel vectors is 0.

If you need to find only a dot product or only a cross product, then
you can do only the calculations that will affect the answer. Experi-
ence in finding dot products and cross products will help you to
learn which calculations affect which products.

Exercise 1: Find (2j)×(i – 3j + 2k) and (2j)•(i – 3j + 2k).
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Unit Numbers

Recall that 1
2−

√3
2 i  is on the unit circle and is a unit number since

∣
1
2 −

√3
2 i∣=1 . Sometimes we want a unit number or vector that 

points in the same direction as another number. To find such a 
number, divide the original number by its absolute value.

Example exercise: Find a unit vector that points in the same direc-
tion as 3i – 2j + 6k.

Solution: If v = 3i – 2j + 6k, then |v|2 = 32 + (–2)2 + 62 = 9 + 4 + 36
= 49. Since |v|2 = 49, |v| = 7. Therefore v

∣v∣ = 3
7 i− 2

7 j+ 6
7 k . Calcula-

tions show that | 3
7 i− 2

7 j+ 6
7 k | = 1.

The vector 3i – 2j + 6k is parallel to the unit vector 3
7 i− 2

7 j+ 6
7 k .

Example exercise: Find a unit vector that points in the same direc-
tion as 4i + 2k.

Solution: If v = 4i + 2k, then |v|2 = 42 + 22 = 16 + 4 = 20. Therefore
∣v∣=√20=√4⋅5=2√5 .  Thus  v

∣v∣=
4

2√5
i+ 2

2√5
k= 2

√5
i+ 1

√5
k .  To  ra-

tionalize the denominators, we multiply each term by √5

√5 . Thus the

unit vector is 2√5
5 i+√5

5 k .

Exercise 1: Find a unit vector that points in the same direction as
i + 3j – 2k.

Exercise 2: Find (i + 3j – 2k)×(2i) and (i + 3j – 2k)•(2i).

10)
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Vector Angles

Sometimes we want to know the angle between two 3-D vectors.
The dot product helps us to find that angle. Consider the vectors
u = 3i – j + 2k and v = 4i + 5j – 7k. Careful calculations show that
u•v = 3(4) + (–1)(5) + 2(–7) = 12 – 5 – 14 = –7. In words, multiply
coefficients of like terms and add the products.

Consider the vectors shown
in the diagram to the right.
Let  p =  3j and  q = 2i + 4j.
The  only  like  terms  are  3j
and 4j. Thus p•q = 3(4) = 12.

In  the  formula  below,  θ is
the angle between p and q:

cosθ =
p •q

∣ p∣∣q∣
Obviously, |p| = |3j| = 3.
To find |q|, first find |q|2:
|q|2 = 22 + 42 = 4 + 16 = 20.
So ∣q∣=√20=√4⋅5=2√5 .
According to the formula above,  cosθ= 12

3 (2√5)
= 2

√5
. This tells us

that θ=cos−1( 2
√5

) . Find angles to two decimal places. A calcula-

tor gives the answer  θ ≈  26.57° . When we look at the diagram,
26.57° is a reasonable value for the angle between 3j and 2i + 4j.
To make sure you know how to use your calculator, use it to find
cos−1( 2

√5
)  and see if the result is approximately 26.57°.

Example exercise: Find the angle between 4i + j + 2k and 3j – 5k.

Solution: Let p = 4i + j + 2k and q = 3j – 5k. Thus j and 3j are like 
terms as are 2k and –5k. So p•q = 1(3) + 2(–5) = 3 – 10 = –7.

|p|2 = 42 + 12 + 22 = 16 + 1 + 4 = 21. Thus |p| = √21 .

|q|2 = 32 + (–5)2 = 9 + 25 = 34. Thus |q| = √34 . 

Thus cosθ= −7
√21 √34

= −7
√714

 and θ=cos−1( −7
√714

) ≈ 105.19° .

Exercise 1: Find the angle between 2i – j + k and 3i + 4j.

2i 4i

2j

-2j

-2i-4i

4k

4j

-4j

2k

-2k

-4k

2i + 4j

3j

11)
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Parallelograms

Recall that the angle θ between the vectors p
and q can be found using this formula:

cosθ=
p •q

∣p∣∣q∣

We can rearrange the formula like this: p•q = |p||q| cos θ. This for-
mula shows that if p and q are perpendicular, then p•q = 0 since
cos 90° = 0. The vectors p and q shown above are two sides of a
parallelogram. The area of the parallelogram is |p×q|.

Example exercise: Find the area of the parallelogram formed by the
vectors 3i – 4k and 2k. Also find the angle between the vectors.

Solution: p = 3i – 4k and q = 2k Give names to vectors

(3i – 4k)(2k) Find 4-D product

6ik – 8k2 Distribute

6(–j) – 8(–1) ik = –j and k 2 = –1

8 – 6j Simplify and rearrange

p•q = – 8 and p×q = –6  j Definitions of • and ×

Area = |–6j| = 6 Area = |p×q|

|p| = 5 and |q| = 2 |p|2 = 32 + (–4)2 and |q|2 = 22

cosθ=
−8

(5)(2)
cosθ =

p• q
∣p∣∣q∣

cosθ=−4
5 Simplify

θ=cos−1(−4
5 ) Use inverse cosine

θ ≈ 143.13° Use calculator

Make sure that your calculator gives the angle of 143.13° when 
you instruct it to find cos−1(− 4

5 ) .

Exercise 1: Find the area of the parallelogram formed by the vec-
tors 2i + j and – j + k. Also find the angle between the vectors.

Exercise 2: Write both the polar and rectangular forms of the prod-
uct (3 cis 210°)(4 cis 120°). If you need assistance, study the first example
in Lesson 5.

p

q

θ

12)
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Vector Rotation

Suppose  we  want  to  rotate
2i + 4j about unit vector k by
an angle of –120°. Call k the
rotation  vector and  –120°
the  rotation angle.  To find
the new vector, we multiply
(cos  –120°  +  k sin  –120°)
and (2i + 4j).

To use this method for rotat-
ing  a  vector,  the  rotation
vector  needs  to  be  a  unit
vector that is perpendicular
to the vector being rotated.

In general, to rotate vector v about unit vector u by an angle of θ,
find the value of (cos θ + u sin θ) v. Remember, u must be a unit
vector that is perpendicular to v (i.e., |u| = 1 and u•v = 0). If the work
is done correctly, the resulting 4-D product should be a 3-D vector.

Example exercise: Rotate 2i + 4j about k by an angle of –120°.

Solution:  Obviously  k is  a  unit  vector  perpendicular  to  2i +  4j.
Thus we can use the formula (cos θ + u sin θ) v where u = k and
v = 2  i   + 4  j and θ = –120°. By studying the unit circle, we observe
that cis –120° = cis 240° since –120° + 360° = 240°. Thus we see
that cis –120° = −1

2 −
√3
2 i . Recall that cis θ = cos θ + i sin θ.

Thus cos –120° = −1
2  and sin –120° = −√3

2 . We can now evaluate
the expression (cos θ + u sin θ) v:

(cos –120° + k sin –120°)(2i + 4j) Substitute

( −1
2 + −√3

2 k)(2i + 4j) See unit circle

–i – 2j – √3 ki – 2 √3 kj Distribute

–i – 2j – √3 j + 2 √3 i ki = j and kj = –i

(−1+2√3)i+(−2−√3) j Rearrange

That vector is approximately 2.46i – 3.73j and is vector w in the di-
agram above. Observe that |w| = |v|.

2i 4i

2j

-2j

-2i-4i

4k

4j

-4j

2k

-2k

-4k

v = 2i + 4j

k

w

13)
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Example exercise: Rotate 4i + 3k about 3

5 i− 4
5 k  by 90°.

Solution: Since ( 3
5 i− 4

5 k )•(4i + 3k) = 3
5 (4)− 4

5 (3)= 12
5 − 12

5  = 0, the

rotation vector  3
5 i− 4

5 k  is perpendicular to 4i + 3k. We also see

that  ∣3
5 i− 4

5 k∣ = 1 since  ∣3
5 i− 4

5 k∣2=( 3
5 )

2+(−4
5 )

2= 9
25 +

16
25 = 1. Thus

we can let  u =  3
5 i− 4

5 k  and  v =  4  i   +  3  k  and  θ =  90° in  the
expression (cos θ + u sin θ) v:

[cos 90° + ( 3
5 i− 4

5 k ) sin 90°](4i + 3k) Substitute

[0 + ( 3
5 i− 4

5 k )(1)](4i + 3k) See unit circle

( 3
5 i− 4

5 k )(4i + 3k) Simplify

12
5 i 2+9

5 ik− 16
5 ki−12

5 k 2 Distribute

−12
5 − 9

5 j− 16
5 j+ 12

5
i 2 = k 2 = –1
ik = – j and ki = j

−5 j Simplify

The following paragraph is  a simple cryptogram that  introduces
terminology not needed for these lessons. However, people often
use that terminology when talking about 2-D and 4-D numbers.

Uif gpvs-ejnfotjpobm ovncfst jo uiftf mfttpot bsf rvbufsojpot. Uxp-ejnfotjpobm
ovncfst bsf dbmmfe dpnqmfy ovncfst. Ovncfst uibu dpoubjo uif trvbsf sppu pg
ofhbujwf pof bsf vogpsuvobufmz dbmmfe  jnbhjobsz ovncfst. Ep opu mfu tvdi
ufsnjopmphz jogmvfodf zpv up uijol uibu uiftf ovncfst bsf tpnfipx mftt sfbm
uibo ofhbujwf ovncfst.

Both 2-D numbers and 4-D numbers are powerful tools. They help
us who live in 3-D space. These numbers enrich our lives. Expand
your mind – think outside of the number line!

Exercise 1: Rotate 8i + 2k about –j by 60°. In the regular exercises, the 
rotation vector is always a unit vector perpendicular to the vector being rotated.

Extra credit 1: If the vector v being rotated about the unit vector u 
is not perpendicular to u, then the following formula can be used:

(cos θ
2 +u sin θ

2 )v (cos θ
2 −u sin θ

2 )

Use that formula to rotate 2i + 4j about j by 60°.
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Squaring 2-D Numbers

Consider the expression z2. If we substitute the number i
for z in that expression, we get i2 which is –1. Now sub-
stitute –1 for z in z2. The result is (–1)2 = 1. Now substi-
tute 1 for z in z2. We get 12 = 1. Consider the table to the
right.  We let  z0 represent the initial  value of  z.  In this
case,  z0 = i. Then z1 = i 2 = –1. Then z2 = (–1)2 = 1, etc.
Each number below z0 is the square of the number above it.

The table below lists the results when we start with various values
of z0. Each number below z0 is the square of the number above it.
The first column begins with z0 = i as discussed above. In that col-
umn, the absolute value of each number is 1.

The second column begins with z0 = 2i. For that column, the abso-
lute values increase as we go down the column. The third column
begins with z0 = 1.1i. In that column, the absolute values also in-
crease, but initially not as fast as they do when z0 = 2i. In this table,
if a number has more than 4 decimal places, then it is rounded to
the 4th decimal place.

The fourth column begins with z0 = 0.9i. In that column, the abso-
lute values decrease as we go down the column. The fifth column
begins with z0 = cis 30°. When multiplying 2-D numbers, the an-
gles are added. Thus (cis 30°)2 = (cis 30°)(cis 30°) = cis 60°.

z0 i 2i 1.1i 0.9i cis 30° 1 + i

z1 –1 –4 –1.21 –0.81 cis 60° 2i

z2 1 16 1.4641 0.6561 cis 120° –4

z3 1 256 2.1436 0.4305 cis 240° 16

z4 1 65,536 4.5950 0.1853 cis 120° 256

Observe that (cis 240°)2 = (cis 240°)(cis 240°) = cis 480°. Then
since 480° – 360° = 120°, we conclude that (cis 240°)2 = cis 120°.
In this column, the numbers stay on the unit circle. Thus each ab-
solute value is 1.

We substitute z0 for z in the expression z2 to get z1. Then we substi-
tute z1 for z in the expression z2 to get z2. Then we substitute z2 for

z0 = i
z1 = –1
z2 = 1
z3 = 1
z4 = 1

14)
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z in the expression z2 to get z3, etc. When we do this type of substi-
tution, we say that we are iterating z2. We take the result produced
by evaluating the expression for a certain value and substitute that
result back into the expression to get a new result, etc.

Recall that iterating z2 when z0 = 2i produced numbers whose abso-
lute values continually increased. If we continue to iterate  z2, the
sizes of the numbers will increase without limit. We will call the
list of numbers {2i, –4, 16, 256, …} the orbit for z0 = 2i. In that
orbit, the absolute values increase without limit. Thus we say that
the orbit for z0 = 2i is attracted to infinity.

When z0 = i, the orbit is {i, –1, 1, 1, 1, …}. That orbit is not attract-
ed to infinity.  When  z0 = 0.9i,  the orbit  is  {0.9i,  –0.81,  0.6561,
0.4305, 0.1853, …}. Iterating z2 results in the numbers of the orbit
getting closer and closer to 0. Thus the orbit for z0 = 0.9i is not at-
tracted to infinity.

The expression z2 divides the 2-D number plane into two regions –
numbers whose orbits are attracted to infinity and numbers whose
orbits are not attracted to infinity. Numbers outside the unit circle
produce orbits attracted to infinity. Numbers either on the unit cir-
cle or inside the unit circle produce orbits that are not attracted to
infinity.

The numbers on the unit circle form the boundary of the region of
the numbers whose orbits are attracted to infinity. Because of the
work of the man Gaston Julia, we call the unit circle the Julia set
for the expression z2.

The diagram at the top of the next page attempts to show the Julia
set for the expression z2 – 1. The design shows the approximate lo-
cation of the boundary of the region of the numbers whose orbits
are attracted to infinity as  z2 – 1 is iterated.

When  z0 = i, then z1 = i2 – 1 = –1 – 1 = –2. So z2 = (–2)2 – 1 = 3.
Then z3 = 32 – 1 = 8. The orbit is {i, –2, 3, 8, 63, 3968, …}. These
calculations show that the orbit is attracted to infinity. From the di-
agram, we can see that i is outside of the design. The 2-D numbers
inside the design produce orbits that are not attracted to infinity.
The numbers outside of the design produce orbits attracted to infin-
ity.
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The design below shows the approximate location of the Julia set
for the expression z2 – 0.74 + 0.08i. On this diagram, the locations
of 1, –1,  i, and –i are indicated using tick marks without labels.
The numbers outside the design produce orbits attracted to infinity.
The numbers inside the design produce orbits that are not attracted
to infinity. The numbers on the Julia set are boundary points that
produce orbits that stay on the Julia set.

1–1

–i

i

z2 – 1

z2 – 0.74 + 0.08i
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The  design  to  the
right is the Julia set
for  the  expression
z2 + 0.26 + 0.5i. No-
tice that the number
1 + 0i is outside of
the  design.  This  in-
dicates  that  z0 =  1
produces an orbit at-
tracted to infinity.

Example exercise:
For z2 + 0.26 + 0.5i,
find  z1 and  z2 when
z0 = 1. Round deci-
mals  to  the  nearest
hundredth.

Solution:

z1 = 12 + 0.26 + 0.5i z0 = 1

= 1.26 + 0.5i Simplify

z2 = (1.26 + 0.5i)2 + 0.26 + 0.5i z1 = 1.26 + 0.5i

= (1.26 + 0.5i)(1.26 + 0.5i) + 0.26 + 0.5i Expand

≈ 1.59 + 0.63i + 0.63i – 0.25 + 0.26 + 0.5i Distribute

≈ 1.60 + 1.76i Simplify

Example exercise: Using the values of z1 and z2 from above, evalu-
ate |z1| and |z2| to the nearest hundredth.

Solution: |z1|2 = 1.262 + 0.52 ≈ 1.84. Thus |z1| ≈ 1.36 .

|z2|2 ≈ 1.602 + 1.762 ≈ 5.66. Thus |z2| ≈ 2.38 .

Exercise 1: For the expression z2 + 0.26 + 0.5i, find z1 and z2 when
z0 = i. Round decimals to the nearest hundredth.

Exercise 2: Using z1 and z2 from Exercise 1, find |z1| and |z2| to the
nearest hundredth.

z2 + 0.26 + 0.5i

Consider these pairs of letters: ab, bc, cd, de, etc. They may help you decode a cryptogram.
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Julia Sets

The diagram to the above-left shows the Julia set for z2 + 0.3. Ob-
serve that this Julia set consists of disconnected pieces. The dia-
gram to the above-right shows the Julia set for z2 + i. This Julia set
is connected. The Julia set for z2 + 0.3 is disconnected. The Julia
sets displayed in the previous lesson were connected sets like the
Julia set for z2 – 0.83 + 0.17i shown below. All of the Julia sets dis-
cussed in these lessons are for expressions of the form z2 + c. For
the Julia set below, c = –0.83 + 0.17i. For the Julia sets displayed
above, c = 0.3 and c = i.

15)

z2 + 0.3 z2 + i

z2 – 0.83 + 0.17i
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Five of the designs on the title page are Julia sets. For the top two
designs,  c = –0.0986 – 0.6522i and  c = –0.0979 + 0.6522i. The
numbers –0.14495 + 0.651i and –0.14558 – 0.651i are the values
of c for the bottom two designs. The central design shows the Julia
set for c = 0.26 after the Julia set has been rotated 90°.

Example exercise: Find z1 and z2 when c = i and z0 = 1 – i.

Solution: We substitute into the expression z2 + c:

z1 = (1 – i)2 + i z0 = 1 – i and c = i

= (1 – i)(1 – i) + i Expand

= 1 – i – i – 1 + i Distribute

=  –i Simplify

z2 = (–i)2 + i z1 = –i and c = i

=  –1 + i Simplify

Exercise 1: For z2 + c, find z1 and z2 when c = –i and z0 = i.

Exercise 2: For each of the following Julia sets, write connected or 
disconnected.

a)  b)   c)

d)  e)   f )

g)  h)   i)

z 2 – 0.757 + 0.071i

z
2 +

 0.2627 +
 0.0 02i

z
2 +

 0.26274 +
 0 .002225i

z2 – 1.263 + 0.036i

z 2 + 0.28 + 0.48i

z 2 + 0.28 + 0.49i

z2 – 1.3

z2 – 1.5

z 2 – 0.174 + 0.662i
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The Expression z2 + c

As the diagrams above show, the Julia set for  z2 – 0.2 + 0.67i is
disconnected and the Julia set for z2 – 0.2 + 0.7i is connected. To
decide if a Julia set is connected, we can analyze the orbit when
z0 = 0. If the orbit for z0 = 0 is attracted to infinity, then the Julia
set is  disconnected.  If that orbit is  not attracted to infinity, then
the Julia set is connected.

Consider  z2 – 0.2 + 0.67i. The table to the
right shows some values for that orbit when
z0 = 0. By the time the orbit reaches z26, it is
obvious that the orbit is attracted to infinity.
Thus the Julia set is disconnected. In an or-
bit for z2 + c where |c| ≤ 2, if the size of a
number ever exceeds 2, then the orbit is
attracted to infinity. FOR EACH JULIA SET IN THESE LESSONS, |c| ≤ 2.

Consider  z2 –  0.2 + 0.7i.  The  table  to  the
right shows some of the values a computer
calculated for the orbit when z0 = 0. Observe
that z204 ≈ z201. From the numbers in the table,
it may appear that  z204 = z201. However, the
values shown for  z204 and z201 are  rounded.
Thus z204 ≈ z201. Also, z205 ≈ z202 and z206 ≈ z203.
If the iteration process is continued for the
expression  z2 – 0.2 + 0.7i, the approximate
values  in  the  orbit  will  continue  to  be
0.13 + 0.14i, –0.20 + 0.74i, and –0.70 + 0.40i. Since the orbit stays
near these numbers forever, the orbit is not attracted to infinity and
the Julia set is connected.

c = –0.2 + 0.67i c = –0.2 + 0.7i

z0 = 0
z1 = –0.2 + 0.67i
z2 ≈ –0.61 + 0.40i
z3 ≈ 0.01 + 0.18i…

z25 ≈ –1.97 + 3.80i
z26 ≈ –10.79 – 14.33i

z0 = 0
z1 = –0.2 + 0.7i
z2 = –0.65 + 0.42i
z3 ≈ 0.05 + 0.15i…

z201 ≈ 0.13 + 0.14i
z202 ≈ –0.20 + 0.74i
z203 ≈ –0.70 + 0.40i
z204 ≈ 0.13 + 0.14i
z205 ≈ –0.20 + 0.74i
z206 ≈ –0.70 + 0.40i

16)
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Example exercise: Shown above is part of the orbit for z2 + c when
c = 0.28 + 0.02i and  z0 = 0. Find |z99|  to the nearest hundredth.
Which Julia set above was produced using c = 0.28 + 0.02i?

Solution: |z99|2 ≈ 0.442 + 0.182 ≈ 0.23. Thus |z99| ≈ 0.48 .

The values in the orbit are staying near 0.44 + 0.18i. Thus the orbit
is not attracted to infinity and the Julia set is connected. Therefore
the answer is B  since it is connected and A is disconnected.

Example exercise: Shown above is part of the orbit for z2 + c when
c = –0.75 + 0.11i and  z0 = 0. Find |z29| to the nearest hundredth.
Which Julia set above was produced using c = –0.75 + 0.11i?

Solution: |z29|2 ≈ 1.332 + (–1.95)2 ≈ 5.57. Thus |z29| ≈ 2.36 .

Since |z29| > 2, the orbit is  attracted to infinity and the Julia set is
disconnected. Thus the answer is A since it is disconnected and B
is connected.

Exercise 1: Shown above is part of the orbit for z2 + c when z0 = 0
and c = –0.9 + 0.2i. Find |z78| to the nearest hundredth. Which Julia
set above was produced using  c = –0.9 + 0.2i? (In  these  types  of
exercises, the z’s in the orbits have been selected so that you can determine if the
set is connected by analyzing the absolute value of the last  z displayed. If that
absolute value is not greater than 2, then the orbit is not attracted to infinity.)

z95 ≈ 0.44 + 0.19i
z96 ≈ 0.44 + 0.18i
z97 ≈ 0.44 + 0.18i
z98 ≈ 0.44 + 0.18i
z99 ≈ 0.44 + 0.18i

A) B)

z25 ≈ –0.36 + 0.69i
z26 ≈ –1.09 – 0.39i
z27 ≈ 0.28 + 0.96i
z28 ≈ –1.58 + 0.65i
z29 ≈ 1.33 – 1.95i

A) B)

z74 ≈ –0.05 – 0.23i
z75 ≈ –0.95 + 0.22i
z76 ≈ –0.05 – 0.22i
z77 ≈ –0.95 + 0.22i
z78 ≈ –0.05 – 0.22i

A) B)
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Mapping Connected Julia Sets

Recall that for  z2 +  c, some values of  c produce connected Julia
sets and some values produce disconnected Julia sets.  A Julia set
for z2 + c is connected if and only if the orbit for z0 = 0 is not at-
tracted to infinity. Whenever |c| > 2, the orbit for z0 = 0 is attract-
ed to infinity and the Julia set is disconnected. If |c| ≤ 2, then the
Julia set might be connected or disconnected. The diagram below
shades in the values of  c that produce connected Julia sets. The
boundary of the design is emphasized with black. It may not be ob-
vious that there is a spike on the left side of the design that extends
to –2 on the number line and does not extend beyond –2.

This design is a map showing the locations of the val-
ues of c that produce connected Julia sets. This design
is called the Mandelbrot set after Benoit B. Mandel-
brot. The largest region in the design is shaped like a
sideways heart and is called a cardioid because of its
shape. An outline of a cardioid is shown to the left.

–1 –2

–i

+i

17)
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Attached to the main cardioid in the Mandelbrot set are buds. At-
tached to these buds are smaller buds. Attached to these buds are
even smaller buds, etc. We will focus on the buds attached directly
to the main cardioid. There are an infinite number of these buds.
Thankfully, there is an easy way to label these buds. We will use
fractions for the labels. Below is a magnified view of  part of the
Mandelbrot set showing the main cardioid and buds on it. Only the
boundary of the Mandelbrot set is shaded. Most labels are in the
cardioid because of the small sizes of the buds.

The equation  c= 1
2 cisθ− 1

4 cis 2θ  calculates  values  of  c on  the
main cardioid. This equation shows that the cardioid can be formed
by  two  connected  rotating  rods  where  the  second  rod  initially
points to the left. Also, the second rod rotates twice as fast as the
first rod and is half as long as the first rod. To find the value of c

1
2

1
3

2
3

1
4

15

16

2
5

3
7

4 9

3
8

2
7

29

3
5

3
4

4 5
5 6

5
7

17

6 7

Each bud between the
1
3 bud and 

the 2
5 bud is smaller than either 

bud. The largest bud between these 

buds is the 3
8 bud. Observe that

3
8 =

1+2
3+5 . Likewise, the largest bud

between 1
4 and 1

5 is 2
9=

1+1
4+5 .
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where the 2

3 bud attaches to the main cardioid, substitute 2
3⋅360°

for  θ in the equation  c= 1
2 cisθ− 1

4 cis 2θ .  Similarly,  to find the

value of c where the 5
7 bud attaches to the main cardioid, substitute

5
7⋅360°  for θ in that equation. The pattern continues.

Example exercise:  A magnified view
of the  1

6 bud is shown to the right.
Inside the bud is shown the Julia set
for c = 0.389 + 0.217i which is near
the center of the bud. On the left of
this  bud is  where it  attaches to  the
main cardioid. Find the  exact value
of c where the 1

6 bud attaches to the
main cardioid.

Solution:
1
2 cis 60°− 1

4 cis120° θ = 1
6 ·360° = 60° and 2θ = 2·60° = 120°

1
2 (

1
2 +

√3
2 i)− 1

4 (−
1
2 +

√3
2 i) See unit circle

1
4 +

√3
4 i+ 1

8 −
√3
8 i Distribute

3
8 +

√3
8 i Simplify

Example exercise: A magnified view
of the 4

5  bud is shown to the right.
Inside the bud is shown the Julia set
for  c = 0.38 – 0.335i which is near
the center of the bud. Near the left
of the bud is where it attaches to the
cardioid. To the  nearest hundredth,
find the value of c where the 4

5  bud
attaches to the main cardioid.

Solution:
1
2 cis 288°−1

4 cis576° θ = 4
5 ·360° = 288°

1
2 cos288°+ 1

2 i sin 288°− 1
4 cos576°− 1

4 i sin 576° Expand cis
1
2 cos288°− 1

4 cos 576°+i ( 1
2 sin 288°−1

4 sin 576°) Rearrange

0.36 – 0.33i Simplify
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Exercise 1: A magnified view of the

1
12  bud is displayed to the right. In-

side the bud is shown the Julia set
for c = 0.3076 + 0.032i which is in-
side the bud near its left side. At the
upper-left of the bud is where it at-
taches to the cardioid. Find the ex-
act value of c where the 1

12  bud at-
taches to the main cardioid.

Exercise 2: A magnified view of the
7

15  bud is shown to the right. Inside
the bud is  shown the Julia  set  for
c = –0.72 + 0.21i which is the loca-
tion marked with a plus sign. Near
the right of the bud is where it at-
taches to the cardioid. To the  near-
est  hundredth,  find  the  value  of  c
where  the  7

15  bud  attaches  to  the
main cardioid.

Exercise 3: A magnified view of the
1
3  bud is shown to the right. Inside

the bud is  shown the Julia  set  for
c = –0.2 + 0.8i which is the location
marked with a plus sign. At the bot-
tom of the bud is where it attaches
to the cardioid. Find the exact value
of c where the 1

3 bud attaches to the
main cardioid.

Tlw rh zdvhlnv. Sv wrivxgvw nv rm wvevolkrmt gsvhv ovhhlmh rm hkrgv lu
nrhgzpvh  R  nzwv.  Nzb  Sv  yv  tolirurvw  yb  lfi  hgfwb  lu  Srh  drhwln.  Gdl-
wrnvmhrlmzo zmw ulfi-wrnvmhrlmzo mfnyvih svok fh fmwvihgzmw dszg Sv
szh nzwv. Uli zm vovxgilmrx xlkb lu gsvhv ovhhlmh, hvmw z ivjfvhg gl qlsmist
zg tnzro wlg xln. Gszg rh z ezorw zwwivhh zh lu gsv bvzi NNCERR.

+

+
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Bud Denominators

The Julia set for c = –0.61 + 0.44i is connected. It also encloses re-
gions which are shaded in the diagram above.  A connected Julia
set with all enclosed regions is a filled-in Julia set. For the filled-
in Julia set displayed above, seven  arms coming from a  hub are
numbered in the diagram.

The disconnected Julia set dis-
played above also has seven arms
coming from a
hub.
Prove this
to yourself
by finding a hub and
counting the
number of arms
coming from
it. The diagram to the
right shows the bound-
ary of the Mandelbrot set around
the 3

7 bud. It also uses asterisks
to show the locations of the val-
ues of c for the Julia sets above.
The value of c for the connected Julia set is in the 3

7 bud and thus
in the Mandelbrot set. If the value of c for a Julia set is in a bud at-
tached to  the  main cardioid,  then  the  number of  arms coming
from a hub is the denominator of the fraction for the bud. The val-
ue of c for the disconnected Julia set is outside of the Mandelbrot
set. However, it is near enough to the 3

7 bud that the disconnected
Julia set has seven arms coming from a hub. If the value of c for a

1
23

4

5
6

7

c = –0.61 + 0.44i c = –0.6 + 0.453i

–0.61 + 0.44i

–0
.6

 +
 0

.4
53

i

18)

*

*
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disconnected Julia set is near a bud attached to the main cardioid,
then the number of arms coming from a hub is the denominator of
the fraction for the bud.

Example  exercise:  The  value  of  c
for the Julia set to the right is in a
bud attached to  the  main  cardioid
of the Mandelbrot set. What is the
denominator of the fraction for that
bud?

Solution: If this connected Julia set
were  filled-in,  then  three  filled-in
arms would come from each hub.
Thus the denominator is 3 .

Example  exercise:  The  value  of  c for
the Julia set to the right is near a bud
attached  to  the  main  cardioid  of  the
Mandelbrot set. What is the denomina-
tor of the fraction for that bud?

Solution:  Careful  counting  shows that
eight arms come from a hub. Thus the
denominator is 8 .

Exercise 1: The value of  c for
the Julia set to the right is in a
bud attached to  the  main  car-
dioid  of  the  Mandelbrot  set.
What is the denominator of the
fraction for that bud?

Exercise 2: The value of c for the Julia set to
the right is near a bud attached to the main
cardioid of the Mandelbrot set. What is the
denominator of the fraction for that bud?

c =
 –

0.
18

5 
– 

0.
67

3i
c 

=
 0

.3
6 

+
 0

.0
93

i

c = –0.5 + 0.525i

c = 0.2419 + 0.51i
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Mandelbrot Spirals

To the above-left is a magnified view of the 3
4 bud. Look closely at

the top of the bud and notice the small rectangle. If that part of the
boundary of  the  Mandelbrot  set  is  magnified,  we get  the  spiral
design shown to the above-right. The hub at the center of the main
spiral  in the spiral  design has four arms coming from it.  Count
them yourself. Observe that  four is the denominator of  3

4  – the
label for the bud near this spiral design. This is not an accident!

Example exercise: The spiral to the
right  is  near  a  bud attached to  the
main cardioid of the Mandelbrot set.
What is the denominator of the frac-
tion for that bud?

Solution:  Carefully count the num-
ber of arms coming from the center
of the main spiral. The answer is 9 .

Exercise 1: The spiral to the right
is near a bud attached to the main
cardioid  of  the  Mandelbrot  set.
What  is  the denominator  of  the
fraction for that bud? Do not al-
low  the  smaller  spiral  in  the
upper-right  corner  to  confuse
you.  The  main  spiral  gives  the
information you need.

19)
Consider these pairs of letters: az, by, cx, dw, etc. They may help you decode a cryptogram.
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Mandelbrot Similarity

Shown to the above-left is a magnified view of a spiral near the 1
2

bud. The main spiral in that design has 2 arms coming from the
center. Find the small rectangle that has been drawn on the design.
If we magnify the region in the rectangle, we get the design to the
above-right. That design contains within it a shape that looks a lot
like the Mandelbrot set. This shape is a  miniature Mandelbrot.
Remember that this design is a small part of the boundary of the
Mandelbrot set. The Mandelbrot set contains within it an infinite
number of small shapes that look a lot like the entire Mandelbrot
set. Thus the Mandelbrot set is approximately self-similar.

In  the  miniature  Mandelbrot
above an arrow points into the

1
3 bud. The tip of that arrow is

near c = –0.761473 + 0.089919i.
The  connected  Julia  set  to  the
right is for that value of c. Since
that value is near the  1

2 bud of
the  main  Mandelbrot  set,  the
main spirals have 2 arms.

If we greatly magnify the very
center  of  the  Julia  set,  we get
the design to the right. Since the
value of  c is in the  1

3 bud of a
miniature  Mandelbrot,  the  de-
sign  at  the  center  has  3 arms
coming from each hub.

20)
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Example exercise: The value of c for the con-
nected Julia set to the right is from a bud in a
miniature Mandelbrot. The design below the
Julia set is a greatly magnified view of the
center of this Julia set.  For the Julia set to
the right,  c =  0.355414302 + 0.33512317i.
Write  the  denominator  for  the  bud  of  the
main Mandelbrot set that this value is near.
Also write the denominator for the bud of the
miniature Mandelbrot  from
which this value comes.

Solution: Each main spiral in
the Julia set has 5 arms. The
design  in  the  center  of  the
magnified view has  2  arms
from each hub. Thus the de-
nominators are 5  and 2 .

What amazing designs we discover as we study how the simple
expression  z2 +  c behaves in the 2-D number plane! We should
praise God for giving us the privilege of studying √−1 .

Exercise 1: The value of  c for the
connected Julia set to the right is
from a bud in a miniature Mandel-
brot.  The  design  below  the  Julia
set is a greatly magnified view of
the center of this Julia set.  For the
Julia set to the right,
c = –0.103125475 + 0.651512577i.
Write the denominator for the
bud  of  the  main Mandelbrot
set that this value is near. Also
write the denominator for the
bud of the miniature Mandel-
brot  from  which  this  value
comes.
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Practice Exercises

Simplify:

1.1: (1 – 2 √−1 )(2 + √−1 ) 1.2: (–2 + 3 √−1 )(1 + √−1 )

1.3: (3 – 4 √−1 )(3 + 4 √−1 ) 1.4: (–2 + √−1 )(2 + √−1 )

2.1: To the nearest hundredth, if u = 0.6+0.7√−1 , then 
u2 = −0.13+0.84√−1 , u3 ≈ −0.67+0.41√−1 , 
u4 ≈ −0.69−0.22√−1 , u5 ≈ −0.26−0.61√−1 , and 
u6 ≈ 0.27−0.55√−1 .
On graph paper, set up a 2-D number plane where each square is
0.2 units wide. The horizontal axis should vary from –1 to 1 while
the vertical axis should vary from −√−1  to √−1 . On this num-
ber plane, plot and label the points u, u2, u3, u4, u5, and u6.

3.1: Let d = 2+5√−1 . Find d √−1 . Then find d √−1 √−1 . Then
find  d √−1 √−1 √−1 .  On  graph  paper  make  a  number  plane
where each square is 1 unit wide. Make the horizontal axis go from
–5 to 5 and the vertical axis go from −5√−1  to 5√−1 . Plot and
label d, d √−1 , d √−1 √−1 , and d √−1 √−1 √−1 .

Write the rectangular form of:

4.1: 2 cis –120° 4.2: 4 cis 300° 4.3: 6 cis 420°

4.4: 3 cis 450° 4.5: 8 cis –150° 4.6: 5 cis 270°

Write both the polar and rectangular forms for each product:

5.1: (5 cis 90°)(4 cis 120°) 5.2: (2 cis 210°)(5 cis 300°)

5.3: (cis 180°)(6 cis 240°) 5.4: (3 cis 300°)(5 cis 240°)

Evaluate:

5.5: (4 + i)(2 – 3i) 5.6: (2 + 3i)(2 – 3i) 5.7: (2 + 3i)(–2 + 3i)

5.8: (1 + 5i)(5 – i) 5.9: (–3 + i)(–3 – i) 5.10: (1 + i)(–1 + i)

The equation z = 3 cis θ + cis -3θ  describes the design
to the right. Find z for these values of θ:

6.1: 30° 6.2: 60° 6.3: 90° 6.4: 120°

Appendix)
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7.1: On graph paper, set up a number plane where the horizontal
axis varies from –5 to 5 and the vertical axis varies from –5i to 5i.
Use the head-to-tail method to add 3 and –4i. Also use the head-to-
tail method to add –4 – 5i, 1 + 7i, and 5 + 3i. Label every vector.

Evaluate:

8.1: (2 – j)(3i + k) 8.2: (4i + 2k)(–1 + i) 8.3: (3i + 4k)(3i + 4k)

8.4: |3 – 2i + j – 2k| 8.5: |–2 + i + j – 5k| 8.6: |1 + 2i + 2j + k|

9.1: (4i)×(i – j + 2k) and (4i)•(i – j + 2k)

9.2: (3i – 2k)×(2i + j) and (3i – 2k)•(2i + j)

For each vector, find a unit vector that points the same direction:

10.1: i – j + 2k 10.2: –4i + j – 8k 10.3: 3j – 4k

For each pair of vectors, find the angle between the vectors:

11.1: 3i – 2k and 4i + k + j 11.2: 9i + 2j – 6k and –4j + 3k

For each pair of vectors, find the exact area of the parallelogram
formed by them and the approximate angle between them:

12.1: 5k and 2i + j – 3k 12.2: i – 2k and –3i + 4j

13.1: Rotate 4j – 2k about i by 120°

13.2: Rotate 2i + 8j about –k by –150°

The Julia set for  z2 – 0.84 + 0.2i is shown at the top of the next
page. For the following values of  z0, find  z1 and  z2. Also find |z1|
and |z2|. Round decimals to the nearest hundredth.

14.1: z0 = i 14.2: z0 = 1 14.3: z0 = –i 14.4: z0 = –1

15.1: For z2 + c, find z1 and z2 when c = 1 and z0 = 1 – i.

16.1:  Shown below is part of the orbit for z2 + c when z0 = 0 and
c = –1.258 + 0.046i. Find |z33| to the nearest hundredth. Which Julia
set below was produced using this value of c? z29 ≈ –1.38 + 0.23i

z30 ≈ 0.60 – 0.58i
z31 ≈ –1.24 – 0.65i
z32 ≈ –0.14 + 1.66i
z33 ≈ –3.99 – 0.41i

A) B)
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18.1: For the Julia set to the right,
c = –0.8 + 0.1498i. That value is
in a bud attached to the main car-
dioid of the Mandelbrot set. What
is the denominator of the fraction
for that bud?

19.1: The spiral to the right is near a bud
attached  to  the  main  cardioid  of  the
Mandelbrot set. What is the denominator
of the fraction for that bud?

20.1: For the Julia set on the next page, 
c = –0.75125376315 + 0.02835813853i.
It is from a bud in a miniature Mandel-
brot. To the right is a mag-
nified view of the center of
this Julia set. Write the de-
nominator for the bud of the
main Mandelbrot set that  c
is  near.  Also  write  the  de-
nominator for the bud of the
miniature Mandelbrot from
which  c comes.  The diagram
on the next page is rotated 90°.
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