\qquad

1. If a, b, and c are natural numbers such that $a^{2}+b^{2}=c^{2}$, then $[a b c]$ is a Pythagorean triple. The triples [345 5] and [9 12 15] are both Pythagorean triples. A Pythagorean triple is primitive if the numbers have no common factors (other than 1). The triple [345] is primitive. The triple [9 $\left.12 \begin{array}{ll}15\end{array}\right]$ is not primitive. What is the common factor (other than 1) in the triple $\left[\begin{array}{ll}9 & 12\end{array} 15\right] ?$
2. Calculate $\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]\left[\begin{array}{rrr}1 & 2 & 2 \\ -2 & -1 & -2 \\ 2 & 2 & 3\end{array}\right]$. This should result in a primitive Pythagorean triple.
3. To make sure that you did the previous multiplication correctly, check to see if your answer is a Pythagorean triple. Then check to make sure that your answer is a primitive Pythagorean triple. Now consider the following three matrices:

$$
U=\left[\begin{array}{rrr}
1 & 2 & 2 \\
-2 & -1 & -2 \\
2 & 2 & 3
\end{array}\right] \quad D=\left[\begin{array}{rrr}
-1 & -2 & -2 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right] \quad A=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right]
$$

Multiplying a primitive Pythagorean triple by one of these matrices will produce another primitive Pythagorean triple. Let $P=\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]$. So for \#2 you calculated $\boldsymbol{P} \boldsymbol{U}$.
Calculate $P D=\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]\left[\begin{array}{rrr}-1 & -2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 3\end{array}\right]$ to find another primitive Pythagorean triple.
4. Multiply your answer to $\# 3$ by U. The answer should be the Pythagorean triple PDU.
5. Take your answer to $\# 2$ and multiply by D. The answer will be $P U D$.
6. Be sure your answers to 2-5 are Pythagorean triples. Notice that $P U D \neq P D U$. Multiplication of matrices is not generally commutative. Multiply the answer to $\# 2$ by U to find $P U U$.

