1. Use the law of cosines $\left(c^{2}=a^{2}+b^{2}-2 a b \cos C\right)$ to find c.
2. Use the law of cosines or the law of $\operatorname{sines}\left(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\right)$ to find θ (theta) to two decimal places.
3. Use subtraction to find ϕ (phi) to two decimal places.

4. Consider these formulas: $a=m^{2}-n^{2}, b=2 m n-n^{2}, c=m^{2}-m n+n^{2}$. Find (a, b, c) if $(m, n)=(3,1)$.
5. For the triangle found in the previous problem, use the law of cosines to find C (i.e., the measure of the angle opposite c). It may help to sketch the triangle.
6. Using the formulas from \#4, what is (a, b, c) if $(m, n)=(4,1)$?
7. Consider these formulas: $a=m^{2}-n^{2}, b=2 m n+n^{2}, c=m^{2}+m n+n^{2}$. Find (a, b, c) if $(m, n)=(3,1)$.
8. For the triangle found in the previous problem, use the law of cosines to find C.
9. Heron's formula: $A_{\Delta}=\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$. A triangle with rational side lengths and rational area is a Heronian triangle. For the Heronian triangle to the right, first calculate s. Then use Heron's formula to find the area.

10. To two decimal places, find the measure of the obtuse angle in a 6-25-29 triangle.
11. Use Heron's formula to find the area of a 7-15-20 triangle.
12. To two decimal places, find the measure of the obtuse angle in a 7-15-20 triangle.
13. Find the area of a 3-25-26 triangle.

14. To two decimal places, find the measure of the larger acute angle in a 3-25-26 triangle. The law of cosines may be used, or the formula $A_{\Delta}=\frac{1}{2} a b \sin C$ may be used since the angle is acute and the area has been found. This is easier than using the law of cosines.
15. To two decimal places, find ϕ in the triangle to the right.
16. Find the area of a 3-5044-5045 triangle.
17. To two decimal places, find the measure of the larger acute angle in a $3-5044-5045$ triangle. It may help to sketch the triangle.
18. Find the area of a 13-14-15 triangle.
19. Find the area of a $51-52-53$ triangle.
20. To two decimal places, find θ in the triangle to the right.
21. Consider the bold italicized numbers in this list of Heronian triangles: $(3,4,5),(13,14,15)$,
 $(51,52,53),(193,194,195)$. Observe that $194=4.52-14$. To find the next number in that sequence, quadruple the last number and subtract the previous number. Find the next two numbers after 194.
22. Consider the bold italicized numbers in these Heronian triangles: (3, 4, 5), (3, 25, 26), (3, 148, 149), $(3,865,866)$. Observe that $148=6 \cdot 25-4+2$ and $865=6 \cdot 148-25+2$. To find the next number in the sequence, multiply the last number by 6 and subtract the previous number and add 2 . Find the next two numbers after 865 .
23. Evaluate $(5044+5045) \div 7134$ to seven decimal places.

Extra Credit: Find the exact lengths of the three altitudes for a 3-25-26 triangle. Hint: $A_{\Delta}=\frac{1}{2} b h$

